

PowerFLOW Analysis HiLiftPW-2 Configuration

AIAA SciTech 2014 National Harbor, Maryland

Benedikt König
Ehab Fares
Swen Nölting

Introduction Geometry and Model

- Based on DLR-F11 landing configuration
 - EUROLIFT project
 - Wing/body with full span slat/flap (26.5°/32°)
 - Slat tracks and flap track fairings included

Content

- Introduction Lattice Boltzmann Method
- Workshop Test Cases
 - Reynolds Number Study
 - Full Configuration Study
 - Laminar/Turbulent Transition Study
- Additional Study
 - Wind Tunnel Effect
- Summary and Conclusions

Content

- Introduction Lattice Boltzmann Method
- Workshop Test Cases
 - Reynolds Number Study
 - Full Configuration Study
 - Laminar/Turbulent Transition Study
- Additional Study
 - Wind Tunnel Effect
- Summary and Conclusions

Lattice Boltzmann Method

 Simulations performed with Lattice Boltzmann based solver PowerFLOW 5.0

- D3Q19 LBM
 - Cubic cells (Voxels)
 - Surface elements (Surfels)
- Fully transient
- Turbulence Model: LBM-VLES
 - Modified RNG k- ε model for unresolved scales
 - Swirl model
 - Extended wall model
- LTT Model
 - Automatically determines transition locations

Lattice Boltzmann Method Grid Scheme

- Cartesian Grid
- Voxel/Surfel concept with cut cells
 → no surface fitted grid required
- Automatic and robust grid generation process

Case Sizes and Computation Resources

Case sizes for low Reynolds number cases

Case	Total Voxels	FeVoxels
Free-air	405 x 10 ⁶	100 x 10 ⁶
Wind tunnel	470 x 10 ⁶	110 x 10 ⁶

Compute Resources (free-air simulation)

Number of nodes	560
Architecture	Intel Sandybridge, 2.7GHz
Runtime to convergence (~0.15s)	20000 CPUh, 1.5d wall-clock time

Content

- Introduction Lattice Boltzmann Method
- Workshop Test Cases
 - Reynolds Number Study
 - Full Configuration Study
 - Laminar/Turbulent Transition Study
- Additional Study
 - Wind Tunnel Effect
- Summary and Conclusions

Reynolds Number Study Introduction

- Compare full polars at two Reynolds numbers
 - $-Re_{low} = 1.35 \times 10^6 (B-LSWT)$
 - $-Re_{hi} = 15.1 \times 10^6 (ETW)$
- Grids specific to each Reynolds number used

Reynolds Number Study Lift Polar

- C_{L,max} well predicted for both Reynolds numbers
- Differences in lift slope and stall angle
- Reynolds trend captured well

Reynolds Number Study Drag Polar

- Very good agreement at low C_L
- Increasing deviation at higher C_L /AoA
- Reynolds trend captured well

Reynolds Number Study Pitching Moment Polar

- Pitching moment very well captured
- Reynolds trend also captured well

Reynolds Number Study Pressure Distributions

- Pressure distributions at Alpha= 7°,16°,21° are shown
- Inboard (PS02) and outboard (PS08) sections

Reynolds Number Study Pressure Distributions – Alpha = 7deg

Reynolds Number Study Pressure Distributions – Alpha = 16deg

Reynolds Number Study Pressure Distributions – Alpha = 21deg

Content

- Introduction Lattice Boltzmann Method
- Workshop Test Cases
 - Reynolds Number Study
 - Full Configuration Study
 - Laminar/Turbulent Transition Study
- Additional Study
 - Wind Tunnel Effect
- Summary and Conclusions

Full Configuration Study Introduction

- Compare two levels of geometrical complexity
 - Config 4 (w/o pressure tube bundles)
 - Config 5 (with pressure tube bundles)
- Measurements at B-LSWT showed significant impact of these bundles on stall behavior

Photos taken from Rudnik et al. AIAA 2012-2914

Full Configuration Study Lift Polar

- Basically identical forces
- Presence of the bundles has no significant impact on forces
- →Simulation does not capture bundle effect on stall

Full Configuration Study Surface Visualization – Oilflow Flow / Streamlines

Full Configuration Study Surface Visualization – Oilflow Detail

Full Configuration Study Volume Visualization – Swirl

Content

- Introduction Lattice Boltzmann Method
- Workshop Test Cases
 - Reynolds Number Study
 - Full Configuration Study
 - Laminar/Turbulent Transition Study
- Additional Study
 - Wind Tunnel Effect
- Summary and Conclusions

Laminar/Turbulent Transition Study Laminar Regions Detected

Laminar/Turbulent Transition Study Lift and Drag Polars

- Lift increase of 7-8 lift counts around C_{L,max}
- In line with expectation of non-negligible transition effect

Laminar/Turbulent Transition Study, Pressure Distributions – Alpha = 21deg

Content

- Introduction Lattice Boltzmann Method
- Workshop Test Cases
 - Reynolds Number Study
 - Full Configuration Study
 - Laminar/Turbulent Transition Study
- Additional Study
 - Wind Tunnel Effect
- Summary and Conclusions

Wind Tunnel Effect Study Introduction

- Generic wind tunnel test section with dimensions similar to B-LSWT
 - cross section 2.1 x 2.1 m^2
 - Test section length 4.45 m
- Peniche height 100 mm
- Near-field grid similar to previous Low-Reynolds setup
- No official corrections available for wind tunnel simulations

Wind Tunnel Effect Study Lift and Drag Polars

- Uncorrected WT simulation → not directly comparable
- Overall polar shape seems improved

Wind Tunnel Effect Study Generic Wind Tunnel Corrections

- Generic wind tunnel correction
 - $\Delta \alpha = \delta_{\alpha} C_{L}$
 - $\bullet \quad \Delta C_L = \delta_{CL} \ C_L$
 - $\bullet \quad \Delta C_D = \delta_\alpha C_L^2$
- Interference parameters δ_{α} and δ_{CL} chosen to match free-air simulation in linear range

- Goal: free-air and WT simulations corrected to similar standard
- For more details click here
- For a check of the method on the HiLiftPW-1 Trap Wing model click <u>here</u>

Wind Tunnel Effect Study Lift Polar – Corrected

Identical behavior in linear range

Non-linearity at low C_L slightly captured by WT simulation

"dip" just before $C_{L,max}$ is captured

Wind Tunnel Effect Study Lift x Drag Polar – Corrected

Nearly perfect match of corrected WT polar

Wind Tunnel Effect Study Lift x Pitching Moment Polar – Corrected

Lift x Pitching Moment (free-air and WT)

Good match of both corrected WT and free-air polars

Oilflow / Streamline Visualizations 18.5deg

Oilflow / Streamline Visualizations 21deg

Content

- Introduction Lattice Boltzmann Method
- Workshop Test Cases
 - Reynolds Number Study
 - Full Configuration Study
 - Laminar/Turbulent Transition Study
- Additional Study
 - Wind Tunnel Effect
- Summary and Conclusions

Summary

- C_{L,max} levels well matched
- Good agreement on Reynolds number effects
- Missed correct stall mechanism
- Laminar/turbulent transition shows significant effect on $C_{L,max}$ at low Reynolds number
- Simulation of wind tunnel
 - Requires appropriate corrections for final conclusions

Conclusions/Next steps

- Good C_{L,max}-prediction of fully-turbulent free-air simulations could be due to compensation of errors
 - Main flow separation not captured
 - Laminar flow not accounted for
 - Wind tunnel effects on maximum lift unclear
- Need to fully understand and capture the stall mechanism
 - Further investigations of tube bundles geometry shape
- Need to check wind tunnel corrections or include wind tunnel in simulations
- Include transitional predictions in WT simulations

Content

- Introduction Lattice Boltzmann Method
- Workshop Test Cases
 - Reynolds Number Study
 - Full Configuration Study
 - Laminar/Turbulent Transition Study
- Additional Study
 - Wind Tunnel Effect
- Summary and Conclusions
- Appendix: Generic Wind Tunnel Correction

Appendix – Generic WT Corrections Derivation

- based on lifting line (AGARD-AG-109, p. 101)
- Angle of Attack

$$-\Delta\alpha = \delta_0 \frac{s}{c} C_L = \delta_\alpha C_L$$

Lift

$$-\Delta C_L = -\delta_1 \frac{\bar{c}}{2\beta h} \frac{S}{c} \frac{\partial C_L}{\partial \alpha} C_L = \delta_{CL} C_L$$

Drag

$$-\Delta C_D = \delta_0 \frac{s}{c} C_L^2 = \delta_\alpha C_L^2$$

Pitching Moment

$$-\Delta C_M = \delta_1 \frac{\bar{c}}{16\beta h} \frac{\bar{c}}{c} \frac{\delta C_L}{\partial \alpha} C_L = -\frac{\delta_{CL}}{8} C_L$$

Appendix – Generic WT Corrections Applied to Trap Wing

- Generic Correction based on structure given
 - AGARD-AG-109 (Subsonic Wind Tunnel Wall Corrections)
 - AGARD-AG-336 (Wind Tunnel Wall Correction)
- Interference parameters for AoA and lift chosen to reproduce the corrected data

